Worksheet for Section 12.5

Section 12.5 is about using vectors to find equations of planes in space. A plane in space will be specified using a point in the plane and a vector normal (i.e. perpendicular) to the plane. The plane containing point \(P = (x_1, y_1, z_1) \) with normal vector \(\vec{n} = (a, b, c) \) has equation in standard form:

\[
a(x - x_1) + b(y - y_1) + c(z - z_1) = 0
\]

By multiplying out and regrouping, the equation can be written in general form:

\[
ax + by + cz + d = 0
\]

Find the equation in standard form for the plane containing the points \(P = (1, 3, 2), \ Q = (-2, 2, 3), \) and \(R = (3, 0, -1) \). To do this, compute \(\vec{PQ} \times \vec{PR} \) — this will be the normal vector. What is the equation in general form for this plane? Sketch the points \(P, Q, \) and \(R \). Where is the plane relative to those points?

The angle between two planes, with normal vectors \(\vec{n}_1 \) and \(\vec{n}_2 \), is the same as the angle between the normal vectors:

\[
\cos \theta = \frac{|\vec{n}_1 \cdot \vec{n}_2|}{\|\vec{n}_1\| \|\vec{n}_2\|}
\]

Find the angle between the plane you found above (containing the points \(P, Q, \) and \(R \)) and the \(xy \)-plane. (Hint: a normal vector for the \(xy \)-plane is one of the standard unit vectors.)

The distance between a plane (with normal vector \(\vec{n} \) and containing the point \(P \)) and a point \(Q \) (not in the plane) is:

\[
D = \|\text{proj}_{\vec{n}} \vec{PQ}\| = \frac{|\vec{PQ} \cdot \vec{n}|}{\|\vec{n}\|}
\]

If \(Q = (x_0, y_0, z_0) \) and the plane is given by the equation \(ax + by + cz + d = 0 \) (in general form), another formula can be used to find this distance:

\[
D = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}
\]

Find the distance between the plane you found above (containing the points \(P, Q, \) and \(R \)) and the origin \((0, 0, 0)\).

The distance between a point \(Q \) and a line given by direction \(\vec{u} \) and point \(P \) is:

\[
D = \frac{\|\vec{PQ} \times \vec{u}\|}{\|\vec{u}\|}
\]

Find the distance between the point \(R = (3, 0, -1) \) and the line you found above, through the points \(P = (1, 1, 2) \) and \(Q = (-2, 2, 3) \). Is the distance between the origin and this line the same as the distance between the origin and the plane containing \(P, Q, \) and \(R \)?