Worksheet for Section 10.7

Section 10.7 is about Taylor series and Maclaurin series — the series that come from treating the Taylor and Maclaurin polynomials of Section 8.4 as partial sums. It turns out that if a function \(f(x) \) is a function which can be represented by a convergent power series, so that \(f(x) = \sum a_n(x - c)^n \), then the coefficients \(a_n \) must have a special form: \(a_n = f^{(n)}(c)/n! \) — exactly the same as the coefficients of the Taylor polynomials! So the power series obtained for a function \(f(x) \) by using these coefficients is called a Taylor series:

\[
\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!}(x - c)^n = f(c) + f'(c)(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \cdots + \frac{f^{(n)}(c)}{n!}(x - c)^n + \cdots
\]

If \(c = 0 \), you get at Maclaurin series:

\[
\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}x^n = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n + \cdots
\]

Using these formulas, find Maclaurin series for \(f(x) = e^x \) and \(g(x) = \sin x \), and a Taylor series centered at 1 for \(h(x) = \ln x \).

You can determine convergence of these Taylor series by the same techniques you have used before (start with the Ratio Test), but there is another way for Taylor series. A Taylor series for \(f(x) \) centered at \(c \) converges to \(f(x) \) (for every \(x \) in an interval \(I \)) just in case the limit of the Taylor remainder is zero:

\[
\lim_{n \to \infty} R_n(x) = \lim_{n \to \infty} \frac{f^{(n+1)}(z)}{(n+1)!}(x - c)^{n+1}
\]

for some \(z \) between \(x \) and \(c \) (and for every \(x \) in \(I \)). Using this, show that the Maclaurin series you found above for \(g(x) = \sin x \) converges for all \(x \). How can you use this series, together with the Operations on Series from Section 8.9, to find a power series for \(h(x) = \sin(x^2) \)?

There is a table on p. 628 in the book of power series for several elementary functions. Using these series, find power series representations for each of the following functions:

\[
\begin{align*}
 f(x) &= \sqrt{1 + x} & g(x) &= \sqrt{1 - x^2} & h(x) &= \cos^2 x & j(x) &= e^{-x^2}
\end{align*}
\]

The first two examples above use the binomial series for the function \((1 + x)^k\) in the table — this series doesn’t look useful until you notice, as in these examples, that \(k \) doesn’t have to be a positive integer (in the examples, \(k = \frac{1}{2} \)).

Using the last example above, find an estimate for the following definite integral:

\[
\int_0^1 e^{-x^2} \, dx
\]

How can you determine the accuracy of your estimate?